12w^2+28w+5=0

Simple and best practice solution for 12w^2+28w+5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12w^2+28w+5=0 equation:


Simplifying
12w2 + 28w + 5 = 0

Reorder the terms:
5 + 28w + 12w2 = 0

Solving
5 + 28w + 12w2 = 0

Solving for variable 'w'.

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
0.4166666667 + 2.333333333w + w2 = 0

Move the constant term to the right:

Add '-0.4166666667' to each side of the equation.
0.4166666667 + 2.333333333w + -0.4166666667 + w2 = 0 + -0.4166666667

Reorder the terms:
0.4166666667 + -0.4166666667 + 2.333333333w + w2 = 0 + -0.4166666667

Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000
0.0000000000 + 2.333333333w + w2 = 0 + -0.4166666667
2.333333333w + w2 = 0 + -0.4166666667

Combine like terms: 0 + -0.4166666667 = -0.4166666667
2.333333333w + w2 = -0.4166666667

The w term is 2.333333333w.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333w + 1.361111112 + w2 = -0.4166666667 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333w + w2 = -0.4166666667 + 1.361111112

Combine like terms: -0.4166666667 + 1.361111112 = 0.9444444453
1.361111112 + 2.333333333w + w2 = 0.9444444453

Factor a perfect square on the left side:
(w + 1.166666667)(w + 1.166666667) = 0.9444444453

Calculate the square root of the right side: 0.971825316

Break this problem into two subproblems by setting 
(w + 1.166666667) equal to 0.971825316 and -0.971825316.

Subproblem 1

w + 1.166666667 = 0.971825316 Simplifying w + 1.166666667 = 0.971825316 Reorder the terms: 1.166666667 + w = 0.971825316 Solving 1.166666667 + w = 0.971825316 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + w = 0.971825316 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + w = 0.971825316 + -1.166666667 w = 0.971825316 + -1.166666667 Combine like terms: 0.971825316 + -1.166666667 = -0.194841351 w = -0.194841351 Simplifying w = -0.194841351

Subproblem 2

w + 1.166666667 = -0.971825316 Simplifying w + 1.166666667 = -0.971825316 Reorder the terms: 1.166666667 + w = -0.971825316 Solving 1.166666667 + w = -0.971825316 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + w = -0.971825316 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + w = -0.971825316 + -1.166666667 w = -0.971825316 + -1.166666667 Combine like terms: -0.971825316 + -1.166666667 = -2.138491983 w = -2.138491983 Simplifying w = -2.138491983

Solution

The solution to the problem is based on the solutions from the subproblems. w = {-0.194841351, -2.138491983}

See similar equations:

| -51=459 | | 2x^2+0x-98= | | -9/2-6=4 | | -25x+19=-33x-5 | | (y+3)/-6=-15 | | 11=5 | | -7=y/2+5 | | 35x+18-22=12x-7 | | 3x+5-9x=-3(2x-4)-7 | | Bright+7=2 | | 3x+202=12x-14 | | (y+3)/6=-15 | | y+2(y-5)=2y+12 | | 18x-12=-12x-2 | | 3(0)=4y-12 | | (3x)+(4x)=7x | | (3+y)(y+1)=(y+1)(y-1) | | 0.7(4x+3)=1.1-(x+2) | | 145=-11x-31-5x | | (20+2x)(24+2x)=416 | | 4(y-3)=6x | | 3(x+4)-7=x-3 | | 2(3y-1)+5=8y-7 | | 7(3x-4)=-217 | | -10=-2+x/10 | | -0.2(-5.85-6x)=1.5x | | (-40)(2)(3)= | | 0.7(5x+4)=1.1-(x+4) | | 145=-11x-31 | | (x-1)^1/2 | | 2x-4(0)=12 | | 2/j+3=4/5 |

Equations solver categories